
Profesor: Yamil Buenaños Palacios

ybuenano@usbbog.edu.co

UNIVERSIDAD DE SAN BUENAVENTURA

Guía de aprendizaje No.1

Android Vs. Kotlin

Fecha: 11-08-2025

Versión 1

Página 1 de 18

ASIGNATURA: Programación de Móviles.

TEMA: Creación de proyectos Android y Kotlin.

ACTIVIDAD DE ENSEÑANZA – APRENDIZAJE – EVALUACIÓN: Utilizar la herramienta
Android Studio diseñar y construir app móviles nativas.

TIEMPO DE LA ACTIVIDAD DE E-A-E: 1 hora

TIEMPO DE LA GUIA DE APRENDIZAJE: 1 hora

ORIENTACIONES GENERALES: Seguir el siguiente guion para construir y lanzar una
aplicación en Android.

Conceptos

Entorno de desarrollo Android

En este apartado vamos a describir los pasos básicos para disponer en nuestro PC del entorno y las herramientas

necesarias para comenzar a programar aplicaciones para la plataforma Android.

Utilizar un entorno de desarrollo nos facilita mucho la creación de programas. Esto es especialmente importante

en Android dado que tendremos que utilizar una gran variedad de ficheros. Gracias a Android Studio, la creación

y gestión de proyectos se realizará de forma muy rápida, acelerando los ciclos de desarrollo.

Ejercicio paso a paso.
Para crear un primer proyecto Android o en Kotlin, con Android Studio sigue los siguientes pasos:

1. Descargue la herramienta Android Studio, para lo cual siga los siguientes pasos:

mailto:ybuenano@usbbog.edu.co

Profesor: Yamil Buenaños Palacios

ybuenano@usbbog.edu.co

UNIVERSIDAD DE SAN BUENAVENTURA

Guía de aprendizaje No.1

Android Vs. Kotlin

Fecha: 11-08-2025

Versión 1

Página 1 de 18

Des pues de haber descargado la herramienta, proceda con la instalación abriendo el archivo, posteriormente pulse

en la opción Next

mailto:ybuenano@usbbog.edu.co

Profesor: Yamil Buenaños Palacios

ybuenano@usbbog.edu.co

UNIVERSIDAD DE SAN BUENAVENTURA

Guía de aprendizaje No.1

Android Vs. Kotlin

Fecha: 11-08-2025

Versión 1

Página 1 de 18

mailto:ybuenano@usbbog.edu.co

Profesor: Yamil Buenaños Palacios

ybuenano@usbbog.edu.co

UNIVERSIDAD DE SAN BUENAVENTURA

Guía de aprendizaje No.1

Android Vs. Kotlin

Fecha: 11-08-2025

Versión 1

Página 1 de 18

 Proceso de instalación…

 Por último, para finalizar la instalación pulse sobre el botón Finish.

mailto:ybuenano@usbbog.edu.co

Profesor: Yamil Buenaños Palacios

ybuenano@usbbog.edu.co

UNIVERSIDAD DE SAN BUENAVENTURA

Guía de aprendizaje No.1

Android Vs. Kotlin

Fecha: 11-08-2025

Versión 1

Página 1 de 18

 Para crear un proyecto siga los siguientes pasos:

1. Selecciona File > New > New Project...

2. Luego seleccione una plantilla de acuerdo al tipo de lenguaje que se vaya a desarrollar Java o Kotlin

Kotlin

Java

mailto:ybuenano@usbbog.edu.co

Profesor: Yamil Buenaños Palacios

ybuenano@usbbog.edu.co

UNIVERSIDAD DE SAN BUENAVENTURA

Guía de aprendizaje No.1

Android Vs. Kotlin

Fecha: 11-08-2025

Versión 1

Página 1 de 18

 En caso de desarrollar en Java seleccione la plantilla y luego pulse sobre el botón Next, luego rellene

 los datos ingresando nombre del proyecto, luego seleccione la opción de java y por último pulse sobre

 el botón Finish.

En caso que vaya a desarrollar con Kotlin repita los pasos anteriores y seleccione el lenguaje Kotlin

Nombre

proyecto

lenguaje

programación

mailto:ybuenano@usbbog.edu.co

Profesor: Yamil Buenaños Palacios

ybuenano@usbbog.edu.co

UNIVERSIDAD DE SAN BUENAVENTURA

Guía de aprendizaje No.1

Android Vs. Kotlin

Fecha: 11-08-2025

Versión 1

Página 1 de 18

 Proyecto creado tendrá la siguiente forma

lenguaje

programación

Nombre

proyecto

mailto:ybuenano@usbbog.edu.co

Profesor: Yamil Buenaños Palacios

ybuenano@usbbog.edu.co

UNIVERSIDAD DE SAN BUENAVENTURA

Guía de aprendizaje No.1

Android Vs. Kotlin

Fecha: 11-08-2025

Versión 1

Página 8 de 11

 Para ejecutar el proyecto pulse sobre el símbolo Play

Emulador con Android

mailto:ybuenano@usbbog.edu.co

Profesor: Yamil Buenaños Palacios

ybuenano@usbbog.edu.co

UNIVERSIDAD DE SAN BUENAVENTURA

Guía de aprendizaje No.1

Android Vs. Kotlin

Fecha: 11-08-2025

Versión 1

Página 9 de 11

Emulador con Kotlin

mailto:ybuenano@usbbog.edu.co

Profesor: Yamil Buenaños Palacios

ybuenano@usbbog.edu.co

UNIVERSIDAD DE SAN BUENAVENTURA

Guía de aprendizaje No.1

Android Vs. Kotlin

Fecha: feb. de 2023

Versión 1

Página 10 de 11

Estructura de un programa en Android

AndroidManifest.xml: Este fichero describe la aplicación Android. Se define su nombre, paquete, icono,

estilos, etc. Se indican las actividades, las intenciones, los servicios y los proveedores de contenido de la

aplicación. También se declaran los permisos que requerirá la aplicación. Se indica la versión mínima de

Android para poder ejecutarla, el paquete Java, la versión de la aplicación, etc.

java: Carpeta que contiene el código fuente de la aplicación. Como puedes observar los ficheros Java se

almacenan en carpetas según el nombre de su paquete.
MainActivity: Clase Java con el código de la actividad inicial.

ApplicationTest: Clase Java pensada para insertar código de testeo de la aplicación utilizando el API

JUnit.
res: Carpeta que contiene los recursos usados por la aplicación.

drawable: En esta carpeta se almacenan los ficheros de imágenes (JPG o PNG) y descriptores de

imágenes en XML.

mipmap: Es una carpeta con la misma finalidad que res/drawable. La única diferencia es que, si ponemos

los gráficos en mipmap, estos no son rescaldados para adaptarlos a la densidad gráfica del dispositivo

donde se ejecuta la aplicación, sino que se buscará en las subcarpetas el gráfico con la densidad más

parecida y se utilizará directamente. Es recomendable guardar los iconos de aplicación en esta

carpeta [1]. En el proyecto se ha incluido el fichero ic_launcher.png que será utilizado como icono de la

aplicación. Observa como este recurso se ha añadido en cuatro versiones diferentes. Como veremos en el

siguiente capítulo, usaremos un sufijo especial si queremos tener varias versiones de un recurso, de

forma que solo se cargue al cumplirse una determinada condición. Por ejemplo: (hdpi) significa que solo

ha de cargar los recursos contenidos en esta carpeta cuando el dispositivo donde se instala la aplicación

tiene una densidad gráfica alta (180- dpi); (mdpi) se utilizará con densidad gráfica alta (180- dpi). Si

pulsas sobre las diferentes versiones del recurso, observarás como se trata del mismo i cono, pero con más

o menos resolución, de forma que en función de la densidad gráfica del dispositivo se ocupe un tamaño

similar en la pantalla. Véase la referencia sobre recursos alternativos en el anexo y para más detalles.

layout: Contiene ficheros XML con vistas de la aplicación. Las vistas nos permitirán configurar las

diferentes pantallas que compondrán la interfaz de usuario de la aplicación. Se utiliza un formato similar

al HTML usado para diseñar páginas web. Se tratarán en el siguiente capítulo.

menu:Ficheros XML con los menús de cada actividad. En el proyecto no hay ningún menú por lo que no

se muestra esta carpeta.

values: También utilizaremos ficheros XML para indicar valores usados en la aplicación, de esta manera

podremos cambiarlos desde estos ficheros sin necesidad de ir al código fuente. En colors.xml se definen

los tres colores primarios de la aplicación. En dimens.xml, se ha definido el margen horizontal y vertical

por defecto. Observa cómo hay dos ficheros, el usado por defecto y el etiquetado como (w820dp) que

será utilizado en dispositivos con ancho superior a 820 dp, esto ocurrirá en tabletas. En el

fichero strings.xml, tendrás que definir todas las cadenas de caracteres de tu aplicación. Creando recursos

alternativos resultará muy sencillo traducir una aplicación a otro idioma. Finalmente, en styles.xml,

podrás definir los estilos y temas de tu aplicación.

anim: Contiene ficheros XML con animaciones de vistas (Tween).

animator: Contiene ficheros XML con animaciones de propiedades.

xml: Otros ficheros XML requeridos por la aplicación.

raw: Ficheros adicionales que no se encuentran en formato XML.

mailto:ybuenano@usbbog.edu.co
http://www.androidcurso.com/index.php/recursos/31-unidad-1-vision-general-y-entorno-de-desarrollo/148-ficheros-y-carpetas-de-un-proyecto-android#_ftn1

Profesor: Yamil Buenaños Palacios

ybuenano@usbbog.edu.co

UNIVERSIDAD DE SAN BUENAVENTURA

Guía de aprendizaje No.1

Android Vs. Kotlin

Fecha: feb. de 2023

Versión 1

Página 11 de 11

Gradle Scripts: En esta carpeta se almacenan una serie de ficheros Gradle que permiten compilar y

construir la aplicación. Observa cómo algunos hacen referencia al módulo app y el resto son para

configurar todo el proyecto. El fichero más importante es build.gradle (Module:app) que es donde se

configuran las opciones de compilación del módulo:

El primer parámetro que podemos configurar es compileSdkVersion que nos permite definir la versión

del sdk con la que compilamos la aplicación. Las nuevas versiones no solo añaden funcionalidades al

API, también añaden mejoras en los procesos. Por ejemplo, a partir de la versión 3.0 (API 11) solo se

permite el acceso a Internet desde un hilo auxiliar[2]. buildToolsVersion define la versión de las

herramientas de construcción. Interesa que estos valores correspondan con las últimas versiones

disponibles. Puedes utilizar Android SDK Manager para descargarte las últimas

versiones. applicationId ha de coincidir con el nombre del paquete Java creado para la aplicación. Se

utiliza como identificador único de la aplicación, de forma que no se permite instalar una aplicación si ya

existe otra con el mismo paquete. minSdkVersion especifica el nivel mínimo de API que requiere la

aplicación. Es un parámetro de gran importancia, la aplicación no podrá ser instalada en dispositivos con

versiones anteriores y solo podremos usar las funcionalidades del API hasta este nivel (con excepción de

las librerías de compatibilidad). targetSdkVersion indica la versión más alta con la que se ha puesto a

prueba la aplicación. Cuando salgan nuevas versiones del SDK tendrás que comprobar la aplicación con

estas versiones y actualizar el valor. versionCode y versionName indica la versión de tu aplicación.

Cada vez que publiques una nueva versión incrementa en uno el valor de versionCode y aumenta el

valor de versionName según la importancia de la actualización. Si es una actualización menor el nuevo

valor podría ser "1.1" y si es mayor "2.0".

Dentro de buildTypes se añaden otras configuraciones dependiendo del tipo de compilación que

queramos (relase para distribución, debug para depuración, etc.). Los comandos que aparecen configuran

la ofuscación de código. Para más información leer el capítulo «Ingeniería Inversa en Android» de

El Gran Libro de Android Avanzado.

Un apartado importante es el de dependencies. En él has de indicar todas las librerías que han de ser

incluidas en nuestro proyecto. Si necesitas usar alguna librería de compatibilidad adicional has de

incluirla aquí.

mailto:ybuenano@usbbog.edu.co
http://www.androidcurso.com/index.php/recursos/31-unidad-1-vision-general-y-entorno-de-desarrollo/148-ficheros-y-carpetas-de-un-proyecto-android#_ftn1

